
www.manaraa.com

XRel: A Path-Based Approach to Storage and
Retrieval of XML Documents using Relational
Databases

Masatoshi Yoshikawa and Toshiyuki Amagasa
Nara Institute of Science and Technology,
Takeyuki Shimura
IBM Japan, Ltd.
and
Shunsuke Uemura
Nara Institute of Science and Technology

This paper describes XRel, a novel approach to storage and retrieval of XML documents using relational databases.
In this approach, an XML document is decomposed into nodes based on its tree structure, and stored in relational
tables according to the node type, with path information from the root to each node. XRel enables us to store
XML documents using a fixed relational schema without any information about DTDs and element types, and
also enables us to utilize indices such as theB+-tree and theR-tree supported by database management systems.
For the processing of XML queries, we present an algorithm for translating a core subset of XPath expressions
into SQL queries. Thus, XRel does not impose any extension of relational databases for storage of XML doc-
uments, and query retrieval based on XPath expressions can be realized in terms of a preprocessor for database
query language. Finally, we demonstrate the effectiveness of this approach through several experiments using
actual XML documents.

Categories and Subject Descriptors: I.7.1 [Document and Text Processing]: Document and Text Editing—
Document management; I.7.2 [Document and Text Processing]: Document Preparation—Markup languages,
XML; H.2.1 [Database Management]: Logical Design—Schema and subschema; H.3.6 [Information Storage
and Retrieval]: Library Automation—Large text archives

General Terms: Algorithms, Design, Management, Performance

This work is partially supported by the Ministry of Education, Culture, Sports, Science and Technology, Japan
under grants 11480088, 12680417 and 12208032, and by CREST of JST (Japan Science and Technology).
An earlier version of this paper appeared in theProceedings of the Tenth International Conference on Database
and Expert Systems Applications, Aug. 30 - Sep. 3, 1999 (DEXA’99), pp. 206-217.
Name: Masatoshi Yoshikawa, Toshiyuki Amagasa and Shunsuke Uemura
Address: 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
Affiliation: Graduate School of Information Science, Nara Institute of Science and Technology; e-mail:
{yosikawa, amagasa, uemura}@is.aist-nara.ac.jp
Name: Takeyuki Shimura
Address: 1623-14, Shimotsuruma, Yamato, Kanagawa, 242-8502, Japan
Affiliation: IBM Japan, Ltd.; e-mail: takeyus@jp.ibm.com

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed for profit or direct commercial advantage and that copies
show this notice on the first page or initial screen of a display along with the full citation. Copyrights for com-
ponents of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other
works, requires prior specific permission and/or a fee. Permissions may be requested from Publications Dept,
ACM Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, orpermissions@acm.org.

www.manaraa.com

2 · M. Yoshikawa et al.

Additional Key Words and Phrases: text markup, text tagging, XML query, XPath

1. INTRODUCTION

XML (Extensible Markup Language) [World Wide Web Consortium 1998] is emerging as
a standard format for data and documents on the Internet. Various kinds of applications
that use the XML format have been developed (see [Cover]). As a result, many kinds of
data will be exchanged in the form of XML documents or XML data. In addition, storage
devices are begin miniaturized while their capacity is being enlarged. Thus, it is expected
that not only organizations but also individuals will use a large quantity of XML documents
in the near future. Development of techniques for storing massive XML documents and
retrieving information needed from them is one of the core problems regarding the point
of contact between the research area of database and XML.

In this paper, we describe XRel, a novel approach to building XML databases on top of
off-the-shelf relational databases. The design goals of XRel are as follows: (1) No restric-
tion should be imposed on XML documents being stored. Any valid or well-formed XML
documents should be stored and queried; (2) XML queries should be based on W3C stan-
dardization activities. (3) Storage and manipulation of XML documents should be made
possible using currently available relational databases. No extension of data model, query
expressive power, or index structures of relational database systems should be assumed;
and (4) Query processing should be efficient.

One of the important features of XML documents is that we can perform operations
based on their logical structures. Based on this feature, databases that manage XML docu-
ments have to support queries on their logical structures and on their contents. Considering
access based on a logical unit and reuse-ability, it is appropriate to decompose and store
XML documents according to their tree structures. They are then stored in databases. In
order to retrieve XML documents from such databases, XML queries are translated into
database queries (typically in SQL).

There are two approaches to designing database schemas for XML documents, as fol-
lows.

Structure-mapping approach: Database schemas represent the logical structure (or DTDs
if they are available) of target XML documents. In a basic design method, a relation
or class is created for each element type in the XML documents (e.g. [Christophides
et al. 1994; Abiteboul et al. 1997]). A more sophisticated mapping method has also
been proposed, whereby database schemas are designed based on detailed analysis of
DTDs [Shanmugasundaram et al. 1999]. In the structure-mapping approach, a database
schema is defined for each XML document structure or DTD.

Model-mapping approach: Database schemas represent constructs of the XML document
model. In this approach, a fixed database schema is used to store the structure of all
XML documents. Early proposals of this approach include [Zhang 1995]. Another
example includes the “edge approach” [Florescu and Kossmann 1999b], in which edges
in XML document trees are stored as relational tuples.

In this paper, we adopt the model-mapping approach for the following two reasons:

—The data structure of XML documents has richer expressive power than the relational

www.manaraa.com

XRel: A Path-Based Approach to Storage and Retrieval of XML Documents · 3

data model or object-oriented data model; more concretely, neither the relational data
model nor the object-oriented data model has constructs to express the order or choice
(‘ |’) of elements in the element content models in DTDs. This implies that we cannot
find a method of structure mapping that maps data structures of XML documents into
database schemas in a natural way. To cope with this problem, we need to extend the
expressive power of database models [Christophides et al. 1994; Abiteboul et al. 1997].
However, storage schemes assuming extended database models are not applicable to
“off-the-shelf” database systems.

—The structure-mapping approach is suitable when we store a large number of XML doc-
uments that conform to a limited number of document structures or DTDs, and when
the document structures or DTDs are modestly static. However, numerous sophisticated
Web applications are based on the flexible and dynamic usage of XML. In such appli-
cations, there is a demand to store various kinds of XML documents i) the DTDs of
which are not known beforehand, or ii) that are well-formed but do not have DTDs. Fur-
ther, many such applications deal with XML documents the logical structure of which
changes often. Obviously, the structure-mapping approach is inappropriate to the stor-
age of a large number of such dynamic and structurally-variant XML documents.

In both of the above-mentioned approaches to database schema design, XML documents
are decomposed into fragments composed of certain logical units. Obviously, these decom-
position approaches have drawbacks; it takes time to restore the entire or large sub-portion
of original XML documents, and processing of certain text operations such as a proxim-
ity search beyond the boundaries of elements becomes very complex. A simple alternative
approach to overcome these problems is to store the entire text of XML documents in a sin-
gle database attribute as a CLOB (Character Large OBject), or as files outside of database
systems. In our system, we optionally keep the entire text of XML documents in addition
to their fragments stored in database schemas. The decision whether to keep entire XML
documents depends on the demand of the applications that will be used. The entire text of
each XML document in our system is stored as CLOB data if CLOB is supported in the
database system, or stored as text files otherwise.

There are additional important design choices; that is, which database models should we
use for the XML document databases – the (object) relational database model or object-
oriented database ? We chose the (object) relational databases for the following two rea-
sons:

—Current use of (object) relational databases is widespread [Leavitt 2000]. Consequently,
a large quantity of non-XML data have already been stored in them. In order to work in
closer cooperation with such traditional data, it is useful to store XML data in the same
type of databases.

—Query optimization techniques and the processing mechanism in relational databases
have been studied for a quarter of a century, and have reached full growth. Thus, it is
pragmatic to cope with them.

Many query languages for XML documents had already been proposed [Fernandez and
Siméon 1999][Bonifati and Ceri 2000]. Among others, XQL [Robie et al. 1998; Robie
1999] and XML-QL [Deutsch et al. 1998; Deutsch et al. 1999] are important in that detail
language specification is defined for these languages. Quilt [Robie et al. 2000; Chamberlin
et al. 2000a], another notable language, integrates the features of many other languages

www.manaraa.com

4 · M. Yoshikawa et al.

including XQL and XML-QL. Although it was not designed as a full-fledged query lan-
guage, XPath [World Wide Web Consortium 1999] is a language for addressing parts of
an XML document. Currently, standardization activities are ongoing at the W3C [World
Wide Web Consortium]. In our research, we have adopted XPath as a query language
for the following reasons: i) XPath is a W3C Recommendation; and ii) the functionality
of XPath is covered by the expressive power of many query languages proposed thus far,
and is mandatory for the future standard query language [World Wide Web Consortium
2000b]. To provide an XML query interface of databases, we need to develop algorithms
translating XML queries into database queries (in SQL or OQL).

The data structure of XML documents is modeled by a tree [World Wide Web Consor-
tium 2000a]. If we design the relational schema based on the model-mapping approach,
one of the main problems is how to map basic constructs in the tree model to (object)
relational schema. Several approaches have been proposed thus far. For example, one ap-
proach is to store edges, as suggested in [Florescu and Kossmann 1999b]. The other is
to store nodes. In [Zhang 1995], all text nodes in SGML documents are managed with a
NODE class. One of the essential differences between our proposal and the previous re-
search is that we represent the XML tree structure in terms of a combination of path and
region. More precisely, we enumerate available paths from the root to each node in the tree
structure of an XML document, and store the path expressions themselves in a relational
attribute. We represent the tree structure by combining those pieces of information with
information on region. In general, queries on XML documents frequently contain path ex-
pressions. Our approach has a clear advantage in processing such queries. That is, we can
process them in terms of string matches, because every possible path expressions is stored
in the databases as strings. This feature allows the following quantitative and qualitative
advantages:

(1) Our approach has a quantitative advantage in that most of the other approaches, includ-
ing those of [Shanmugasundaram et al. 1999], [Florescu and Kossmann 1999b], and
[Florescu and Kossmann 1999a], require join operations in proportion to the length
of path expressions to process them. If a path expression contains ‘//‘, the number of
join operations becomes up to the length of the longest path in the document tree. Our
approach performs the same processing using string matches. We can therefore reduce
the number of join operations, and achieve efficient query processing.

(2) Our approach has a qualitative advantage in that most other approaches, such as that
of [Shanmugasundaram et al. 1999], [Florescu and Kossmann 1999b] and [Florescu
and Kossmann 1999a], require the capability of recursive queries in the database query
languages, while XRel does not require recursive queries, and can perform the same
function within the SQL-92 standard.

In addition, this paper offers the following contributions:

(1) XRel does not require any special indexing structures, and can utilize conventional
indexing structures such as theB+-tree and theR-tree, which are provided by database
systems.

(2) We give an algorithm to transform XPath expressions into SQL queries. To the best of
the our knowledge, no previous study has provided a complete algorithm translating
query expressions that conform to an XML standard into SQL queries. In addition,
some techniques categorized as the structure-mapping approaches need to develop al-

www.manaraa.com

XRel: A Path-Based Approach to Storage and Retrieval of XML Documents · 5

gorithms translating XML queries into database queries for different XML document
structures or DTD. In those cases, query translation itself becomes difficult. Such al-
gorithms are not viable in the approach [Shanmugasundaram et al. 1999]. On the other
hand, our database schema is simple and uniform. Hence, our translation algorithm is
also independent of document structures.

(3) Finally, we show the advantages of our approach through some experiments using
actual XML documents.

The rest of this paper is organized as follows. Section 3 briefly overviews XML doc-
uments. Section 4 describes how to store XML documents using relational databases in
XRel. Section 5 shows the retrieval of XML documents. Implementation and evaluation
of XRel are described in Section 6. Section 7 concludes this paper, and discusses future
work.

2. RELATED WORK

Because XML has SGML (Standard Generalized Markup Language)[ISO 1986] as a pre-
decessor, there had been several studies on the management of structured documents even
before XML had emerged [Baeza-Yates and Navarro 1996; Sacks-Davis et al. 1994]. Here,
we show related work concerning storage and indexing methods for structured documents.

2.1 Storing Structured Documents in Databases

In this subsection, we describe some methods for storing structured documents in databases.
Those methods can roughly be classified into two categories; database schema designed
for documents with DTD information, and storage of documents without any information
about DTDs. The latter approaches are capable of storing well-formed XML documents
that do not have DTDs. For both approaches, queries on XML documents are converted
into database queries before processing.

2.1.1 Designing Database Schema based on DTD.First, there are simple methods that
basically design relational schemas or object database classes corresponding to every el-
ement declaration in DTD; for example see [Christophides et al. 1994; Abiteboul et al.
1997]. Other approaches design relational schemas by analyzing DTD more precisely.

[Shanmugasundaram et al. 1999] proposed an approach to analyze DTD and automati-
cally convert it into relational schemas. In this approach, a DTD is simplified by discarding
the information of the occurrence order among elements. Thus, the simplified DTD pre-
serves only the semantics of child elements concerning whether the element (a) can occur
only once or more, and (b) is mandatory or not. The graph based on the simplified informa-
tion is called a DTD graph. In order to transform a DTD graph to relational schemas, two
techniques, calledSharedandHybrid, were proposed. In theSharedtechnique, relations
are created for all elements in the DTD graph the nodes of which have an in-degree greater
than one. Nodes with an in-degree of one are inlined in the parent node’s relation. For
each element node having an in-degree of zero, a separate relation is created because they
are not reachable from any other node. In the DTD graph, edges marked with “*” indicate
the element of destination node can occur more than once. For each of such element, a
separate relation is created because relational databases cannot store set values as they are.
Finally, element nodes, which appear along with the directed paths from the element in
the DTD graph that creates the relational schema (R), are also inlined as an attribute in
the relational schemaR. However, the directed paths must not contain “*”. In theHybrid

www.manaraa.com

6 · M. Yoshikawa et al.

technique, elements having an in-degree greater than 2 are also inlined if they are reachable
without passing “*”. Incidentally, order information among elements that is discarded in
the first step can be represented by adding positional information in the relational schema.

2.1.2 Storing Structured Documents without Information about DTD.There have been
several studies that used fixed relational schemas to store structured documents. For ex-
ample, [Horowits and Williamson 1986] proposed to store structured documents (ordered
trees) by decomposing them into relational tables. Also, in a study by [Zhang 1995],
a method to manage SGML documents using object-oriented database systems was pro-
posed. In that work, all text nodes were maintained by a classNODE. In addition, [Flo-
rescu and Kossmann 1999b; Florescu and Kossmann 1999a] proposed several relational
schemas, and performed performance analysis on them. The method proposed in this pa-
per differs from these previous methods in that in this method, information about paths
from the root to each node and its position in the document is maintained in relational ta-
bles. In addition, our proposal does not impose any prerequisites on XML documents to be
stored, whereas [Florescu and Kossmann 1999b; Florescu and Kossmann 1999a] assumes
that each element has an ID attribute.

2.2 Other Approaches

Regarding index files for structured documents, several studies such as PAT [Salminen and
Tompa 1994], Burkowski [Burkowski 1992], Clarke et al. [Clarke et al. 1995a; Clarke
et al. 1995b] and Navarro et al. [Navarro and Baeza-Yates 1997] have appeared. [Sacks-
Davis et al. 1998] categorized such indexes into position-based and path-based indexings.
In position-based indexes, queries are processed using word element and position. On the
other hand, paths in tree structure are used in path-based indexes. In this paper, we do
not use special indexes for structured documents. However, our storage method is closely
related to the concept of those indexes.

Finally, the topic of abstract data type is related to both storage and query retrieval.
In [Blake et al. 1995], the authors described an approach in which an XML document is
regarde as just a sequence of characters, then operations on tree structures are replaced
with those on character strings, and an abstract data type is defined in a database having
such operations. Our approach differs from those of previous research in that we simply
use an off-the-shelf database system; that is, we do not need any special full-text search
system or indexing structure, and translate XPath queries into SQL.

3. AN OVERVIEW OF XML DOCUMENTS

An XML document consists of three parts: an XML declaration, a DTD (Document Type
Definition), and an XML instance1 . An XML declaration and a DTD are not mandatory
for an XML document. An XML declaration specifies the version and the encoding of
XML being used. A DTD is a schema that constrains the structure of XML instances, and
corresponds to an extended context-free grammar. An XML instance is a tagged document.
We omit concrete descriptions of an XML declaration and a DTD.

An XML instance is a hierarchy of elements, the boundaries of which are either delim-
ited by start-tags and end-tags, or, for empty elements, by empty-element tags. Character

1Although the term ‘XML instance’ does not appear in the XML Recommendation [World Wide Web Consor-
tium 1998], we use this term to represent XML document data excluding an XML declaration and a DTD.

www.manaraa.com

XRel: A Path-Based Approach to Storage and Retrieval of XML Documents · 7

<issue>
<editor>

<first>Michael</first>
<family>Franklin</family>

</editor>
<articles>

<article category="research surveys">
<title>Comparative Analysis of Six XML Schema Languages</title>
<authors>

<author>
<first>Dongwon</first>
<family>Lee</family>

</author>
<author>

<first>Wesley</first>
<middle>W.</middle>
<family>Chu</family>

</author>
</authors>
<summary>As <keyword>XML</keyword> is emerging ... </summary>

</article>
</articles>

</issue>

Fig. 1. An XML instance.

data between start-tags and end-tags are the content of the element. Figure 1 shows an
example of an XML instance. A start-tag is the token that encloses an element type with<
and>, and an end-tag is the token that encloses an element type with</ and>. Elements
can nest properly within each other, and the nesting represents logical structure. Within
start-tags, attribute names and attribute values can be specified.

XML documents have two levels of conformance: valid and well-formed. A well-
formed XML document follows tagging rules prescribed in XML. An XML document
is valid if it is well-formed and if the document complies with the constraints expressed in
an associated DTD.

It is an XML processor that examines whether an XML document is well-formed (or
valid). The XML processor is a software module, which is used to read XML documents
and provide access to their content and structure. It is assumed that an XML processor
is doing its work on behalf of another module, called the application [World Wide Web
Consortium 1998].

3.1 Data Model for XML Documents

We employ the data model of XPath [World Wide Web Consortium 1999] to represent
XML documents. We assume that XML documents are guaranteed to be valid or well-
formed by XML processors. Here, we briefly introduce the XPath data model. The full
specifications of the data model can be found in [World Wide Web Consortium 1999].

In the XPath data model, XML documents are modeled as an ordered tree. There are
seven types of nodes. In this paper, we consider only the following four types of nodes for
the sake of simplicity. For each type of node, there is a way of determining astring-value
for a node of that type. Some types of node also have anexpanded-name. Document order

www.manaraa.com

8 · M. Yoshikawa et al.

article

Dongwon

author

Lee

author

authors

first family

Wesley W.

first middle

Chu

family

As

summary

keyword

XML

Michael

editor

Franklin

first family

articles

issue

root

element

attribute

abc string-value

text

1

2

3

4

5

6

7

8

9

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27 28

29

category

research surveys

11
title

Comparative Analysis
of Six XML

 Schema Languages

10

12

is emerging ...

30

Fig. 2. An XML tree.

is defined among all the nodes in the document, and corresponds to the order in which
the first character of each node occurs in the XML document.Reverse document orderis
simply the reverse of the document order.

—Root node: The root node is the root of the tree. The element node for the document
element is a child of the root node. The string-value of the root node is the concatenation
of the string-value of all text node descendants of the root node in document order.

—Element nodes: There is an element node for every element in the document. An ele-
ment node has an expanded-name, which is the element type name specified in the tag.
Element nodes have zero or more children. The type of each child node is Element or
Text. The string-value of an element node is the concatenation of the string-values of all
text node descendants of the element node in document order.

—Attribute nodes: Each element node has an associated set of attribute nodes. Note that
the element node is the parent of each of these attribute nodes; however, an attribute
node is not a child of the element node. Attribute nodes have an attribute name and an
attribute value. Attribute nodes have no child nodes. The expanded-name and string-
value of an attribute node is its name and value, respectively. If more than one attribute
of an element node exists, the document order among the attributes is not distinguished.
This is because there is no order among XML attributes.

—Text nodes: Text nodes have character data specified in the XML Recommendation as
a string-value. A text node does not have an expanded-name. Text nodes have no child
nodes.

The remaining three types of nodes are namespace nodes, processing instruction nodes,
and comment nodes. The discussion in this paper will be extended to include these three
types of nodes.

www.manaraa.com

XRel: A Path-Based Approach to Storage and Retrieval of XML Documents · 9

SimplePathExpr ::= ’#/’ Step
| SimplePathExpr ’#/’ Step

Step ::= NameTest
| ’@’ NameTest

NameTest ::= QName

Fig. 3. The syntax of simple path expressions.

Figure 2 shows a graphic depiction of the data model instance of the XML document in
Figure 1. We call such graphs anXML tree.

4. DATABASE SCHEMAS FOR STORING XML DOCUMENTS

In this section, we describe database schemas for storing XML documents. First, thebasic
XRel schema, which is based on SQL-92 data types, is introduced. Then several variations
on the basic XRel schema are described. Some of the variations assume functionalities not
supported in SQL-92.

4.1 Basic XRel Schema

Because path expressions frequently appear in XML queries, we use paths as a unit of
decomposition of XML trees. For each node excluding the root node in XML data model
instances, we store the information on the path from the root node to the node. For example,
the path from the root to the node 3 (and node 10, respectively) in Figure 2 can be denoted
as#/issue#/editor (and#/issue#/articles#/article#/@category, re-
spectively). More precisely, the path from the root node to an element (or attribute) node
can be represented by a path expression defined by the non-terminal symbolSimplePathExpr
shown in Figure 3. Hereafter, we call such path expression thesimple path expression(of
an element node or an attribute node). We also define that the simple path expression of a
text node is the same as that of its parent element node. Note that, in simple path expres-
sions, ‘#/’ is used as a delimiter of steps instead of ‘/’ that is used in path expressions of
XPath. We will explain, in Section 5.1, the reason why we use ‘#/’ instead of ‘/’.

Unfortunately, simple path expressions are insufficient to restore the topology of XML
trees, because more than one node may share the same simple path expression, and because
precedence relationship among nodes is lost in simple path expressions. Hence, to preserve
the precedence and ancestor/descendant relationship among nodes, the region of each node
is also kept.

Definition1. Theregionof an element or text node is a pair of numbers that represents
the start and end positions, respectively, of the node in an XML document. Theregionof
an attribute node is a pair of two identical numbers that is equal to the start position of the
parent element node plus one.

The reason we use somewhat unusual definition of the region of attribute nodes is twofold:
i) the document order among attribute nodes sharing the same parent element node are
left implementation dependent in the specification of the XPath data model; and ii) the
technical reason that the parent element node of an attribute node can be judged by the
comparison ‘<’ (not by ‘≤’) between the first numbers of their regions. The key idea of
the storage scheme in XRel is to keep the combination of the simple path expression and

www.manaraa.com

10 · M. Yoshikawa et al.

the region of nodes in an XML tree as relation tuples, thus preserving the information of
the topology of the XML tree and expanded-names of nodes.

For example, simple path expression and the region of some nodes in Figure 2 can be
represented as follows:

node 10 #/issue#/articles#/article#/@category (82, 82)
node 14 #/issue#/articles#/article#/authors#/author (190, 248)
node 28 #/issue#/articles#/article#/summary#/keyword (348, 369).

In the basic XRel schema, we create one relational schema for each node type. A tuple
in the relation for a node type represents a node of the type, and stores the simple path
expression, the region, and some additional information including the string-value of the
node. Nodes of different XML documents are stored in the same relation as long as they
are of the same type. To distinguish such nodes, document identifiers are also stored in
tuples. Given that there are three node types (element, attribute, and text) excluding the
root, we create three relational schemas.

When storing a large number of XML documents having the same or similar structures,
which is typically the case when XML documents conforming to the same DTD are stored,
a single simple path expression may appear many times in relations. To save the storage
space, we replace simple path expressions in the three relations by path identifiers, and cre-
ate the fourth relation which stores the pair of path identifiers and simple path expressions.

Accordingly, the basic XRel schema consists of the following four relational schemas:

Element(docID, pathID, start, end, index, reindex)
Attribute(docID, pathID, start, end, value)
Text(docID, pathID, start, end, value)
Path(pathID, pathexp).

The database attributesdocID, pathID, start, end, andvalue represent document
identifier, simple path expression identifier, start position of a region, end position of a re-
gion, and string-value, respectively. Given that the occurrence of an element node or a text
node is uniquely identifiable by its region, the set of database attributesdocID, start,
andend is a key of the relationElement andText. To identify each of the attribute
nodes sharing a common parent element node, an attribute name is required. Given that
the suffix of the simple path expression of an attribute node is the attribute name, the set
of database attributesdocID, start, end, andpathID serve as the key of the relation
Attribute. The database attributesindex andreindex in the relationElement
represent the occurrence order of an element node among the sibling element nodes in
document order and reverse document order, respectively. In fact,index andreindex
values are not mandatory for restoring original XML documents; however, these values
are useful for processing XML queries efficiently. The database attributepathexp in the
relationPath stores simple path expressions.

As an example, Figure 4 shows a database instance of the basic XRel schema storing
the XML document in Figure 1. In Figure 4,NodeIDright outside of the tablesElement,
Attribute, andText is not stored in the tables, but is presented only for reference
purpose.

The key features of the basic XRel schema can be summarized as follows: (1) The topol-
ogy of XML trees and the expanded-name of nodes are represented by the combination of

www.manaraa.com

XRel: A Path-Based Approach to Storage and Retrieval of XML Documents · 11

Element
docID pathID start end index reindex NodeID

1 1 0 729 1 1 2
1 2 7 70 1 1 3
1 3 15 36 1 1 4
1 4 37 61 1 1 6
1 5 71 721 1 1 8
1 6 81 710 1 1 9
1 8 118 180 1 1 11
1 9 181 335 1 1 13
1 10 190 248 1 2 14
1 11 198 219 1 1 15
1 12 220 239 1 1 17
1 10 249 325 2 1 19
1 11 257 277 1 1 20
1 13 278 296 1 1 22
1 12 297 316 1 1 24
1 14 336 700 1 1 26
1 15 348 369 1 1 28

Attribute
docID pathID start end value NodeID

1 7 82 82 research surveys 10

Text
docID pathID start end value NodeID

1 3 22 28 Michael 5
1 4 45 52 Franklin 7
1 8 125 172 Comparative Analysis ... 12
1 11 205 211 Dongwon 16
1 12 228 230 Lee 18
1 11 264 269 Wesley 21
1 13 286 287 W. 23
1 12 305 307 Chu 25
1 14 345 347 As 27
1 15 357 359 XML 29
1 14 370 690 is emerging as the ... 30

Path
pathID pathexp

1 #/issue
2 #/issue#/editor
3 #/issue#/editor#/first
4 #/issue#/editor#/family
5 #/issue#/articles
6 #/issue#/articles#/article
7 #/issue#/articles#/article#/@category
8 #/issue#/articles#/article#/title
9 #/issue#/articles#/article#/authors
10 #/issue#/articles#/article#/authors#/author
11 #/issue#/articles#/article#/authors#/author#/first
12 #/issue#/articles#/article#/authors#/author#/family
13 #/issue#/articles#/article#/authors#/author#/middle
14 #/issue#/articles#/article#/summary
15 #/issue#/articles#/article#/summary#/keyword

Fig. 4. A storage example of XML documents.

www.manaraa.com

12 · M. Yoshikawa et al.

simple path expressions and regions; (2) a relation is created for each node type; and (3)
simple path expressions are extracted out in a separate relation to reduce the database size.

4.2 Variations of the Relational Schema

The relational schema described above is one of the most basic. Some variations can be
considered.

4.2.1 Schemas Conforming to the SQL-92 Model

(1) Preserving the parent information of each node: For the efficient processing of XPath
expressions, such as/books/*/title, containing a special symbol*which matches
any element type, it will be useful to keep information about each node’s parent, even
though information on parents are redundant.

(2) There are several alternative methods for representing regions. In the basic XRel
schema, we simply used the number of bytes counted from the beginning of docu-
ment. Further, we can consider the following ways:
—Given an XML document, for a string data, we record the word’s position in terms of

an integer representing its orders from the beginning of the document. For a tag, we
represent its position in terms of a pair of real numbers; the integral part represents
the number of preceding words, and the decimal part represents the number of tags
existing between the previous word and the current tag. Doing this enable us to
minimize effects of appearances of tags on a word-based proximity search [Sacks-
Davis et al. 1998].

—Generally speaking, contents of XML documents change as time goes by. When
updates to a document occur, positional information about the previous version of
that document is no longer useful. Hence, it is important to minimize the effects
of document updates on positions. Relative region coordinates (RRC) [Kha et al.
2001] compute a position in terms of the distance not from the beginning of the
document, but from the beginning of its parent.

4.2.2 Schemas Beyond the SQL-92 Model

(1) TEXT type:
If the underlying DBMS supports variable length text data, we can define a relation to
store full text data of XML documents in addition to the basic XRel schema. Larger
database size is an obvious disadvantage for the augmented database schema; however,
execution of text search operations becomes possible. Certain proximity searches such
as those across the boundary of elements, will become very fast, though processing
those search operations is not feasible in the basic XRel schema.

(2) Introduction of ADTs (Abstract Data Types):
If the underlying DBMS supports user-defined ADTs, we can define the database
schemas exploiting them. An example of such an ADT is the one representing re-
gions. In the basic XRel schema, two separate attributes are used to represent regions.
We can define an ADTREGION to manage regions of nodes. An instance of the
REGION type is a pair of numbers(r, s) such that0 ≤ r ≤ s. Useful functions that
could be defined for this ADT include the following:
—BOOLEAN contain(REGION pos)

For a givenREGION instancepos = (ra, sa), this function returnstrue if (r <

ra) ∧ (sa < s) holds, and returnsfalse otherwise.

www.manaraa.com

XRel: A Path-Based Approach to Storage and Retrieval of XML Documents · 13

—BOOLEAN precede(REGION pos)
For a givenREGION instancepos = (ra, sa), this function returnstrue if s < ra

holds, and returnsfalse otherwise.
These functions are used to judge the containment and precedence relationships among
occurrences of nodes in a document. In addition, ifR-tree indices are supported by
the DBMS, the processing of these functions is accelerated.

5. QUERY TRANSLATION

In the XRel, the relational schema presented in Section 4 is hidden from applications. Users
or applications view XML documents modeled as XML trees, and issue XML queries
against the XML trees. The system then translates XML queries into SQL queries. In this
section, we describe the query translation algorithm in detail.

Because a standard XML query language has not yet emerged, we focus our discussion
on a class of query expressions commonly found in the XML query languages proposed
thus far. An important query construction in XML query languages is path expressions,
which often appear in XML queries. XPath is a language for addressing parts of an XML
document. Although XPath itself is not a full-fledged query language, its syntax and se-
mantics are used in many proposed query languages. Thus, we focus on a core part of
XPath as an XML query language for the XRel. We name the core partXPathCore. XPath-
Core expressions are basically the intersection of the non-terminal symbolPathExpr in
XPath 1.0 [World Wide Web Consortium 1999] and the non-terminal symbolPathExpr
in Quilt [Chamberlin et al. 2000b]. The syntax of XPathCore is shown more specifically in
Figure 5, in a form of simplified syntax of the non-terminal symbolPathExpr in Quilt.
We assume that queries in XPathCore are given in the form ofPathExpr. The semantics
of XPathCore follow XPath 1.0 [World Wide Web Consortium 1999].

5.1 An Overview of the Query Translation

We give an overview of the translation process from XML queries against XML documents
stored in the relational schema presented in Section 4 into SQL queries. We begin with the
following XPathCore expression to give an overview of query translation:

/issue//family (1)

For a given noden in an XML tree, ‘//’ in XPath 1.0 selects the noden and all of its
descendant nodes. Hence, query (1) selects allfamily element nodes that are descen-
dants of anyissue element node. A simple but key observation is that we can eas-
ily find the resultingfamily element nodes in XRel databases using string matching in
SQL. To give a more general explanation, we define two subclasses of regular expressions
(RegularExpr in Figure 5) in XPathCore;simple regular expressions(SimpleRegularExpr
in Figure 6), andsimple absolute regular expressions(SimpleAbsoluteRegularExpr
in Figure 6.) In XRel databases, simple path expressions from the root node to every node
are stored (recall the syntax of simple path expression, which is given in Figure 3). The
only difference between simple absolute regular expressions and simple path expressions
is that the former have ‘/’ and ‘//’ as a delimiter of steps, while the latter have ‘#/’. We
can find nodes satisfying a simple absolute regular expressions by replacing occurrences
of ‘/’ in s with ‘#/’, and occurrences of ‘//’ with ‘ #%/’, then performing SQL string
matching using the string after the replacement against thepathexp attribute in the rela-
tion Path. Therefore, the XPathCore expression (1) can be translated into the following

www.manaraa.com

14 · M. Yoshikawa et al.

Query ::= PathExpr

PathExpr ::= RegularExpr
| ’/’ RegularExpr
| ’//’ RegularExpr
| BasicExpr Predicate* ’/’ RegularExpr
| BasicExpr Predicate* ’//’ RegularExpr

RegularExpr ::= Step Predicate*
| RegularExpr ’/’ Step Predicate*
| RegularExpr ’//’ Step Predicate*

Step ::= NameTest
| ’@’ NameTest

Predicate ::= ’[’ Comparison ’]’

BasicExpr ::= ’(’ Comparison ’)’
| Literal
| Number

Comparison ::= ArithExpr
| ArithExpr CompareOp ArithExpr

CompareOp ::= ’=’
| ’!=’

ArithExpr ::= BasicExpr Predicate*
| PathExpr

NameTest ::= QName

Fig. 5. The syntax of XPathCore.

SimpleRegularExpr ::= Step
| SimpleRegularExpr ’/’ Step
| SimpleRegularExpr ’//’ Step

SimpleAbsoluteRegularExpr ::= ’/’ SimpleRegularExpr
| ’//’ SimpleRegularExpr

Fig. 6. The syntax of simple regular expression and simple absolute regular expression.

SQL query:

SELECT e1.docID, e1.start, e1.end
FROM Element e1, Path p1
WHERE p1.pathexp LIKE ’#/issue#%/family’
AND e1.pathID = p1.pathID
ORDER BY e1.docID, e1.start, e1.end

Now, we can explain the reason why we had used ‘#/’, instead of ‘/’, as a delimiter of
simple path expressions that are stored in thePath relation. If we had stored a path ex-
pression in the form ‘/issue/family,’ we would translate the query (1) into the above
SQL, provided the third line was replaced into the followingWHERE clause condition.

www.manaraa.com

XRel: A Path-Based Approach to Storage and Retrieval of XML Documents · 15

WHERE p1.pathexp LIKE ’/issue%/family’

The resultant SQL query returns an incorrect answer, because the string pattern

’/issue%/family’

matches with not only the path expression/issue/family, but also other path expres-
sions such as/issues/family, /issuelist/family, and etc.

Next, let us consider the more complex XPathCore expression, below:

//article[summary/keyword = ’XML’]//author/family (2)

This query retrieves the family name of authors of an article, summary of which contains
a keyword ‘XML’. To translate this query into an SQL query, we need to compensate for
the missing prefix of some path expressions in the query. For example, to process the com-
parisonsummary/keyword = ’XML’ in the query using XRel databases, we need to
check for the existence of an element node that has a simple path expression satisfying the
simple absolute regular expression//article/summary/keyword. Likewise, we
need to concatenate the path expressions//article and//author/family to ob-
tain the simple absolute regular expression//article//author/family, which, in
turn, is translated into the string pattern#%/article#%/author#/family in SQL.
As this example suggests, in general, simple regular expressions may appear in a query.
Also, long simple absolute regular expressions might be divided into fragments by pred-
icates, whereas in thePath relation of the XRel databases, simple path expressions are
stored. Therefore, to process the general form of path expressions in XPathCore, we need
to ‘cut’ a given query into fragment paths and ‘splice’ them into the complete form of
simple absolute regular expressions. We introduce theXPathCore graphto give a clear
representation of and guidance for this ‘cut and splice’ process.

The translation from XPathCore expressions into SQL queries are performed in the fol-
lowing two steps.

(1) In the first step, the XPathCore graph is created as an intermediate representation of
XPathCore expressions. An XPathCore expression is divided into simple (absolute)
regular expressions. In this process, predicates, groupings, and comparison operators
play the role of ‘punctuation marks.’ Nodes and edges in an XPathCore represent path
expressions and their relationship, respectively.

(2) In the second step, SQL queries are generated from XPathCore graphs. SQL clauses
are generated for each node and edge in an XPathCore graph.

We will give detailed descriptions of each of these two steps in Section 5.2 and Section 5.3,
respectively.

5.2 The translation from XPathCore expressions into XPathCore graphs

From the discussion in Section 5.1, we first need to identify the longest possible simple
regular expressions and simple absolute regular expressions in a given query. To this end,
we begin by presenting an alternative syntax rule of XPathCore expressions. The syntax
rule ofRegularExpr can be rewritten as shown in Figure 7. In this figure, ‘+’ is a meta
symbol representing ‘one or more occurrences.’ From the syntax rule in Figure 7, we can
generally representRegularExpr in the following sequence:

S0 {P1}+ A1 {P2}+ . . . {Pn−1}+ An−1{Pn}∗

www.manaraa.com

16 · M. Yoshikawa et al.

RegularExpr ::= SimpleRegularExpr PathStep* Predicate*

PathStep ::= Predicate+ SimpleAbsoluteRegularExpr

Fig. 7. Alternative syntax of regular expressions.

wheren ≥ 0. Also,S0, Ai (i = 0, . . . , n−1), andPj (j = 1, . . . , n), represents a language
of non-terminal symbolsSimpleRegularExpr, SimpleAbsoluteRegularExpr
andPredicate in Figure 5. ‘{ }+’ and ‘{ }∗’ are meta symbols, which represent ‘one
or many occurrences,’ and ‘zero or many occurrences,’ respectively.

Example1. For example, the query (2) can be viewed as a concatenation ofA0, P1,
andA1, whereA0 is //article, P1 is [summary/keyword = ’XML’], andA1 is
//author/family.

To clarify the relationship among simple regular expressions, simple absolute regular
expressions, and predicates in a given query, we introduce a graph called theXPathCore
graph. The formal definition of the XPathCore graph is as follows:

Definition2. (XPathCore graph)
The XPathCore graph is a directed graphG(N,E) satisfying the following constraints:

—Every node has anode type, that is one of the following seven non-terminal symbols:
BasicExpr, Predicate, SimpleRegularExpr,
SimpleAbsoluteRegularExpr, Literal, Number, orBoolean.

—Every node, other than those of theBoolean type, has avalue. For a node of typeT ,
the value of the node is a language ofT .

—N is the union of two mutually-disjoint sets of nodes:ordinal nodesand index nodes.
Ordinal nodes are depicted by a solid circle, and index nodes by a dashed circle.

—There is exactly one node inN called theoutput nodeof G. The output node is depicted
by a shaded circle.

—E is the union of two mutually-disjoint sets of edges:Et (tree edges) andEc (compar-
ison edges). Tree edges are depicted by a solid line, and comparison edges by a dashed
line.

—The graph(N, Et) is a tree with a root. In(N, Et), children of a node are ordered. A
tree edge from a parentn to its i-th childm is denoted by(n, i, m).

—A comparison edge has aCompareOp as a label. A comparison edge fromn to m with
a labelθ is denoted by(n, θ, m).

For example, the XPathCore graph of the query (2) is shown in Figure 8. In the figure,
the value of a node is depicted near the outside of each node except forn2, which is a
Boolean node.

We now explain the major algorithmGenerateQG, which produces an XPathCore
graph for a given XPathCore expression. From the syntax rule in Figure 5, we can ob-
serve that the non-terminal symbolsPathExpr andComparison are defined in a mu-
tually recursive manner. To simplify the presentation, the algorithmGenerateQG is
designed for a language ofComparison as an input. BecauseComparison has, as
its major component, the non-terminal symbolArithExpr, we first give the algorithm
CreateInitialQG that returns an initial XPathCore graph for a given language ofArithExpr.

www.manaraa.com

XRel: A Path-Based Approach to Storage and Retrieval of XML Documents · 17

Q�

��

Q� Q�
��DXWKRU�IDPLO\

Q�

��DUWLFOH

��

Q�
VXPPDU\�NH\ZRUG ¶;0/¶

Fig. 8. The XPathCore graph of the query (2).

CreateInitialQG(E)

Input: ArithExpr E

Output: An XPathCore graphG

Algorithm:

(1) If E is the following form:

B {P0} ∗ A0 {P1}+ A1 {P2}+ . . . {Pn−1}+ An−1{Pn}∗

then, create an XPathCore graphG depicted in Figure 10. Note that:
—the root node ofG is B; and
—the output node isAn−1. (When the sequenceA0 and its successor is missing, the output node isB.)

(2) If E is the following form:

A0 {P1}+ A1 {P2}+ . . . {Pn−1}+ An−1{Pn}∗

then, create an XPathCore graphG depicted in Figure 10, with the following obvious modification:
(a) the nodeB and its out-edges are removed; and
(b) the root node isA0.

(3) If E is the following form:

S0 {P1}+ A1 {P2}+ . . . {Pn−1}+ An−1{Pn}∗

then, create an XPathCore graphG depicted in Figure 10, with the following obvious modification:
(a) the nodeB and its out-edges are removed;
(b) the root nodeA0 is replaced byS0; and
(c) when the sequenceA1 and its successor is missing, the output node isS0.

Fig. 9. The algorithmCreateInitialQG.

Observe that a language ofArithExpr can be represented by one of the following three
sequences:

B {P0} ∗ A0 {P1}+ A1 {P2}+ . . . {Pn−1}+ An−1{Pn} ∗

A0 {P1}+ A1 {P2}+ . . . {Pn−1}+ An−1{Pn} ∗

S0 {P1}+ A1 {P2}+ . . . {Pn−1}+ An−1{Pn}∗

Here,B represents the language ofBasicExpr, shown in Figure 5. The algorithmCre-
ateInitialQG is given in Figure 9, that creates the XPathCore graph in Figure 10. Note that

www.manaraa.com

18 · M. Yoshikawa et al.

N����

N���

N���

�����
�����

$Q��

3QNQ3Q� �����

� NQ
3Q�

�

%

3�N�3�� �����

� N�
3��

�

$�

3�N�3�� �����

� N�
3��

�

3�N�3�� �����

� N�
3��

�

$�

$�

Fig. 10. The XPathCore graph forArithExpr.

there are two types ofP nodes: ordinal nodes and index nodes.
The algorithmGenerateQGis given in Figure 11. This algorithm first creates an XPath-

Core graph in Figure 10 or an XPathCore graph in Figure 12. The algorithm then recur-
sively replaces occurrences ofBasicExpr andPredicate by XPathCore graphs, and
finally produces an XPathCore graph that contains nodes of five node types:

SimpleRegularExpr, SimpleAbsoluteRegularExpr, Literal,
Number, andBoolean.

After creating an XPathCore graph by the algorithmGenerateQG, we performpath
concatenationon the XPathCore graph. In this process, we concatenate the value of simple
regular expression nodes and simple absolute regular expression nodes along tree edges
from the root to a node in an XPathCore graph to obtain a full path expression.

Definition3. Let n be a simple regular expression node or a simple absolute regular
expression node in an XPathCore graphG. Theconcatenated-valueof n (in G) is defined
recursively as follows:

(1) If n has no ancestor simple regular expression or simple absolute regular expression
node, the value ofn is the concatenated-value ofn.

(2) Otherwise, letna be the closest ancestor simple regular expression or simple abso-
lute regular expression node. The concatenated-value ofn is:
(a) the concatenation of the concatenated-value ofna, ‘/’, and the value ofn (if n is

of simple regular expression type).
(b) the concatenation of the concatenated-value ofna, and the value ofn (if n is of

simple absolute regular expression type).

www.manaraa.com

XRel: A Path-Based Approach to Storage and Retrieval of XML Documents · 19

GenerateQG(C)

Input: Comparison C

Output: An XPathCore graphG

Algorithm:

—If C is anArithExpr E:
(1) G := CreateInitialQG(E)
(2) If there is a nodeB of typeBasicExpr in G, perform the followings:

(a) If the value ofB is (C′) (whereC′ is aComparison):
Replace the nodeB in G by a directed graphGenerateQG(C′). More precisely, do the followings
in this order:
i. G′ := GenerateQG(C′)
ii. changeG as follows:

—Let the output node ofG′ be O and the maximum number of the label of out-edges of
O be kO (or 0 if there is no out-edge ofO.) Change every out-edge(B, m, X) into
(O, kO + m, X).

—RemoveB.
—If the output node of the graph before replacement wasB, let the output node of the graph

after replacement beO. Otherwise, remain the output node unchanged.
(b) If B is of typeLiteral: Change the node type ofB from BasicExpr to Literal.
(c) If B is of typeNumber: Change the node type ofB from BasicExpr to Number.

(3) If there is aP node inG, do the followings:
/* Note thatP can not be the output node. */
Let P = [C′] whereC′ is aComparison.
Change the destination of an in-edge ofP into GenerateQG(C′), and removeP .
More precisely, do the followings in this order:
(a) G′ := GenerateQG(C′)
(b) If P was an index node inG, let the root node ofG′ be an index node
(c) ChangeG in the following way:

—Change the destination of an in-edge ofP be the root node ofG′.
—RemoveP .
—Remain the output node ofG unchanged (i.e. ignore the output node ofG′.)

(4) return G

—If C is of the formE1 CompareOp E2 (whereE1 andE2 areArithExpr’s):
Create the following XPathCore graphG andreturn G. (see Figure 12)
(1) The root ofG is a newly createdBoolean nodenb.
(2) LetG1 beGenerateQG(E1), andG2 beGenerateQG(E2). Create the following edges:

—an edge (with an order label1) from nb to the root node ofG1; and
—an edge (with an order label2) from nb to the root node ofG2.

(3) Let the output node ofG1 beO1, and the output node ofG2 beO2. Create a comparison edge fromO1

to O2 with a labelCompareOp.
(4) The output node ofG is nb.

Fig. 11. The algorithm which generates XPathCore graphs from XPathCore expressions.

Example2. The concatenated-values of the nodesn1, n3, andn5 in Figure 8 are
//article,
//article/summary/keyword, and
//article//author/family,
respectively.

5.3 Generation of SQL queries

In this section, we present the method to generate SQL queries from an XPathCore graph.

www.manaraa.com

20 · M. Yoshikawa et al.

QE
��

HQHUDWH4�(�� *HQHUDWH4*�(��

&RPSDUH2S2� 2�

Fig. 12. The XPathCore graph for a comparison of twoArithExpr’s.

GenerateSQL(G)

Input: An XPathCore graphG
Output: An SQL query

Algorithm:

(1) LetS be an SQL queryGenerateSimpleSQL(G).
(2) return ProcessOrdinalNodes(S, G).

Fig. 13. An algorithm to generate SQL queries.

Figure 13 shows the main prcedure or the generation algorithm. The algorithm for gen-
erating an SQL query from an XPathCore graph becomes complex when the XPathCore
graph contains one or more ordinal nodes of typeNumber. This is because, unlike in-
dex nodes, we can not use the relation attributeindex to generate SQL queries. Instead,
we need to useEXIST andNOT EXIST clause of SQL. As shown in Figure 13, the
algorithm first calls the procedureGenerateSimpleSQLthat is shown in Figure 15. The
procedureGenerateSimpleSQLdisregards ordinal nodes of typeNumber, and generates
an SQL query for the rest part of a given XPathCore graph. The main algorithm,Gener-
ateSQL, then calls the procedureProcessOrdinalNodesthat add necessary SQL conditions
for ordinal nodes of typeNumber in an XPathCore graph.

In Figure 15, we say a node is of typeExpr if and only if the node is of typeSimpleRegularExpr
or SimpleAbsoluteRegularExpr. As illustrated by query 1 in Section 5.1, each
occurrence of ‘/’ (and ‘//’, respectively) in path expressions is replaced by ‘#/’ (and
‘#%/’, respectively) and used as a pattern in SQL string matching. To express the re-
placement formally, we introduce a functionf%. For a givenSimpleRegularExpr or
SimpleAbsoluteRegularExpr valuep, f%(p) returns a character string obtained by
replacing i) every occurrence of ‘/’ in p with ‘#/’; and ii) every occurrence of ‘//’ in p

with ‘#%/’.

Example3. For example, the XPathCore query (2) is translated into the following SQL
query.

www.manaraa.com

XRel: A Path-Based Approach to Storage and Retrieval of XML Documents · 21

ProcessOrdinalNodes(S, G)

Input: An SQL queryS, and an XPathCore graphG
Output: An SQL query

Algorithm:

(1) Traverse the nodes in the XPathCore graphG in preorder. LetL be the list of ordinal node of typeNumber
in G sorted in preorder.

(2) Until L becomes empty do the following:
(a) Remove the first elementm from L.
(b) Introduce the following notations:

i : the value of the nodem.
n : m’s parent node.
p : n’s parent node, ifn has one.
Gm : the subgraph ofG, consisting of the noden, m’s preceding sibling nodes

mprec, andmprec ’s all descendants.
copyF(Gm, k) : a copy of FROM clauses inS, that is involved solely with nodes in an

XPathCore graphGm. A copy of a variablev in S is namedvk.
copyW(Gm, k) : a copy of WHERE clauses inS, that is involved solely with nodes in an

XPathCore graphGm. A copy of a variablev in S is namedvk.
copyF({p, nk}) : a copy of FROM clause inS, that is involved with nodesp andn. In this

copy, variableek
n is used instead ofen.

copyW({p, nk}) : a copy of WHERE clause inS, that is involved with nodesp andn. In this
copy, variableek

n is used instead ofen.
(c) If i ≥ 2, then add the followingEXISTS predicate to WHERE clause of the SQL queryS.

AND EXISTS (
SELECT ∗
FROM copyF(Gm, 1), . . . ,copyF(Gm, i − 1),

copyF({p, n1}), . . . ,copyF({p, ni−1})
WHERE copyW(Gm, 1), . . . ,copyW(Gm, i − 1)
AND copyW({p, n1}), . . . ,copyW({p, ni−1})
AND e1

n.docID = en.docID
AND ...

AND ei−1
n .docID = en.docID

AND e1
n.start< e2

n.start
AND ...

AND ei−2
n .start< ei−1

n .start
AND ei−1

n .start< en.start
)

(d) Add the followingNOT EXISTS predicate to WHERE clause of the SQL queryS.
AND NOT EXISTS (

SELECT ∗
FROM copyF(Gm, 1), . . . ,copyF(Gm, i),

copyF({p, n1}), . . . , copyF({p, ni})
WHERE copyW(Gm, 1), . . . ,copyW(Gm, i)
AND copyW({p, n1}), . . . , copyW({p, ni})
AND e1

n.docID = en.docID
AND ...

AND ei
n.docID = en.docID

AND e1
n.start< e2

n.start
AND ...

AND ei−1
n .start< ei

n.start
AND ei

n.start< en.start
)

(3) return S.

Fig. 14. An algorithm to process ordinal nodes.

www.manaraa.com

22 · M. Yoshikawa et al.

GenerateSimpleSQL(G)

Input: An XPathCore graphG
Output: An SQL query

Algorithm:

(1) For each noden of typeExpr whose concatenated-value isp, do the followings:
—Add “Path pn” in FROM list; and
—Add “AND pn.pathexp =f%(p)” (if p does not contain ‘//’); or

“AND pn.pathexp LIKEf%(p)” (otherwise)
in WHERE clause.

(2) For each noden which is not connected to a comparison edge, do the followings:
—If the suffix ofp, the concatenated-value ofn, is an element name, then

—Add “Element en” in FROM list; and
—Add “AND en.pathID = pn.pathID” in WHERE clause.
Otherwise (i.e. if the suffix ofp is an attribute name),
—Add “Attribute an” in FROM list; and
—Add “AND an.pathID = pn.pathID” in WHERE clause.

(3) For each noden which is connected to a comparison edge, do the followings:
—If the suffix ofp, the concatenated-value ofn, is an element name, then

—Add “Text tn” in FROM list; and
—Add “AND tn.pathID = pn.pathID” in WHERE clause.
Otherwise (i.e. if the suffix ofp is an attribute name),
—Add “Attribute an” in FROM list; and
—Add “AND an.pathID = pn.pathID” in WHERE clause.

(4) For each index nodem of typeNumber in G, do the followings:
—Add “AND en.index =k” in WHERE clause, wheren is the parent element node ofm, andk is the value

of m.
(5) For each pair of two nodesm andn in G such that i) bothm andn are a node of typeExpr; and ii) n is

the closest ancestor ofm, do the followings:
—Add the followings in WHERE clause:

—“AND xn.start< ym.start”
—“AND xn.end> ym.end”
—“AND xn.docID =ym.docID”
where

x =















e (if the suffix of the value of n is an element name, and n

is not connected to a comparison node)
t (if the suffix of the value of n is an element name, and n

is connected to a comparison node)
a (otherwise, i.e. if the suffix of the value ofn is an attribute name)

(similar fory)
(6) For each comparison edge(n, θ, m) in G,

—Add “AND Xn θ Ym” in WHERE clause, where

Xn =

{

tn.value (if the suffix of the value ofn is an element name)
an.value (if the suffix of the value ofn is an attribute name)
the value of the noden (if n is of typeLiteral or Number)

(similarly for Ym)
(7) For the output noden, add:

—en.docID, en.start, en.end (if the suffix of the value ofn is an element name)
—an.docID, an.start, an.end (if the suffix of the value ofn is an attribute name)
to SELECT clause and ORDER BY clause.

(8) return resultant SQL query.

Fig. 15. The algorithm which generates SQL queries from XPathCore graphs.

www.manaraa.com

XRel: A Path-Based Approach to Storage and Retrieval of XML Documents · 23

SELECT e5.docID, e5.start, e5.end
FROM Path p1, Path p3, Path p5,

Element e1, Element e5,
Text t3

WHERE p1.pathexp LIKE ’#%/article’
AND p3.pathexp LIKE ’#%/article#/summary#/keyword’
AND p5.pathexp LIKE ’#%/article#%/author#/family’
AND e1.pathID = p1.pathID
AND e5.pathID = p5.pathID
AND t3.pathID = p3.pathID
AND e1.start < t3.start
AND e1.end > t3.end
AND e1.docID = t3.docID
AND e1.start < e5.start
AND e1.end > e5.end
AND e1.docID = e5.docID
AND t3.value = ’XML’
ORDER BY e5.docID, e5.start, e5.end

Next we turn to two examples of XPathCore expressions, in which the occurrence order
of elements is specified. The following XPathCore expression retrieves afamily element
that is the second child of anauthor element.

//author/family[2]

In an XPathCore graph, an index node of typeNumber is created. Then, the following
SQL query is generated. In this SQL query, a condition on the relational attributeindex
is specified to handle the occurrence order of elements.

SELECT e1.docID, e1.start, e1.end
FROM Path p1, Element e1
WHERE p1.pathexp LIKE ’#%/author#/family’
AND e1.pathID = p1.pathID
AND e1.index = 2
ORDER BY e1.docID, e1.start, e1.end

The following XPathCore expression has a similar syntax with, but has a different se-
matics from the previous expression.

(//author/family)[2]

This XPathCore expression retrieves afamily element i) that is a child ofauthor el-
ement; and ii) among elements satifying the condition i), that is the second in document
order. In an XPathCore graph, an ordinal node of typeNumber is created. In this case, we
need to useEXISTS andNOT EXISTS predicates in the translated SQL query, which is
given below.

www.manaraa.com

24 · M. Yoshikawa et al.

SELECT e1.docID, e1.start, e1.end
FROM Path p1, Element e1
WHERE p1.pathexp LIKE ’#%/author#/family’
AND e1.pathID = p1.pathID
AND EXISTS (

SELECT *
FROM Path p11, Element e11
WHERE p11.pathexp LIKE ’#%/author#/family’
AND e11.pathID = p11.pathID
AND e11.docID = e1.docID
AND e11.start < e1.start

)
AND NOT EXISTS (

SELECT *
FROM Path p11, Element e11,

Path p12, Element e12
WHERE p11.pathexp LIKE ’#%/author#/family’
AND p12.pathexp LIKE ’#%/author#/family’
AND e11.pathID = p11.pathID
AND e12.pathID = p12.pathID
AND e11.docID = e1.docID
AND e12.docID = e1.docID
AND e11.start < e12.start
AND e12.start < e1.start

)
ORDER BY e1.docID, e1.start, e1.end

6. PERFORMANCE EVALUATION

We have implemented XRel, and carried out a series of performance experiments in order
to check the effectiveness of the method. In this section, we report the outlines of the
implementation and the experimental results.

6.1 Experimental Setup

We used Sun Enterprise 4000 (4× UltraSPARC-II 248 MHz CPU, 32GB RAID disk, and
2048MB memory) running Solaris 2.5.1 and a commercial relational database system. We
utilized IBM’s XML4J (XML Parser for Java) 3.1.0 on top of Sun JDK 1.2.2 as the XML
processor. More specifically, we used the functionalities of validating XML parser and
SAX (Simple API for XML) in order to implement the core module of our system, which
converts XML documents into four relations. In that module, we extract every element’s
simple path expression and its position in the document in a event-driven manner. Then,
we construct the four relations from the results and store them into the database. We used
JDBC to connect with the database.

We evaluated the performance of XRel in comparison with other related studies. We se-
lected the study of Florescu et al. [Florescu and Kossmann 1999a; Florescu and Kossmann
1999b] (FK99), in which their approach, in contrast to ours, does not depend on DTD in-
formation. In their study, XML documents are modeled as ordered and labeled directed
graphs. They do not distinguish elements and XML attributes for simplicity. Each XML
element is represented by a node in the graphs, and element-subelement relationships are

www.manaraa.com

XRel: A Path-Based Approach to Storage and Retrieval of XML Documents · 25

Table 1. Storage example of FK99.

(a) title
source ordinal valint valstring target

10 2 null Comparative Analysis of ... null
...

(b) author
source ordinal valint valstring target

13 1 null null 15
13 2 null null 17
...

represented by edges the labels of which represent subelement names. Text values are
represented as leaves in the graphs.

For that model, they proposed several schemes for mapping XML data into relational
tables. They divided the problem into the following two problems: how to map edges, and
how to map values. To solve the former, they proposed the following three approaches:

(Ee) An edge approach that stores all edges of the graph that represents an XML document
in a single table.

(Eb) A binary approach that groups all of the same labels into one table.

(Eu) A universal approach that stores a single table containing attributes for all element
and attribute names.

To solve the latter, they proposed the following:

(Vs) A separate value tables approach that stores values in separate value tables for each
conceivable data type.

(Vi) An inlining approach that stores values and attributes in the same tables.

Theoretically, we can freely combine the former three approaches for mapping edges
and the latter two approaches for mapping values. Florescu et al. carried out performance
analysis on those combinations, and concluded that the combination of(Eb) and(Vi) out-
performs the others. This approach is called “binary tables with inlining.” In the technique,
every XML element is assumed to have a unique identifier, like oid in object databases. All
elements with the same name are stored into one table. The table has the following struc-
ture:

Bname(source, ordinal, valueint, valuestring, target).

where oids of the source and target elements of each edge are recorded. The key of this
table issourceandordinal. Tables 1 (a) and (b) show an storage example of Figure 2.

We implemented FK99 using the database on which we implemented XRel. Note that
given an XPath query, FK99 requires a number of join operations in proportion to the
length of the path expression. Furthermore, recursive query, which is not supported in
SQL–92, is essential when processing ‘//’s. If recursive query is not supported, we have
to expand the query into several sub-queries by hand using the information from DTDs.

6.2 Experimental Results

www.manaraa.com

26 · M. Yoshikawa et al.

Table 2. Details of test data.

of documents 37
Total size (MB) 7.65
Average size (KB) 206.71
of element nodes 179,689
of attribute nodes 0
of text nodes 147,442
of simple paths 57

Table 3. Database sizes.

(a) XRel
Relation Size (MB)
Element 10.3
Attribute 0
Text 13.2
Path 0.008
Total 23.5

(b) FK99
Description Size (MB)
Max 10.2
Min 0.008
Average 1.29
Total 28.29

6.2.1 Database size.We used the Bosak Shakespeare collection2 as the experimental
data. Table 2 summarizes the characteristics of the collection.

We stored the collection in relational tables using XRel and the approach proposed by
Florescu et al., denoted by FK99, respectively. Tables 3 (a) and (b) show the sizes of the
relational tables. For XRel, four relational tables were generated. The numbers of tuples
contained in each relational table corresponds to the number of nodes in Table 2. The
Attribute table was empty because the test data did not contain any attribute. On the other
hand, 22 tables were generated by FK99. In other words, the data contained 22 kinds of
elements. More precisely, the largest relation,SPEECH, contained 140,277 tuples and the
size was 10.2 MBytes. The smallest relation,SUBTITLE, contained one tuple and the size
was 8 Kbytes. The database size of XRel was slightly smaller than that of FK99, but the
sizes of both exceed the size of the original document. However, we can say that this is
permissible, because the cost of storage devices has been greatly declining in recent years,
and the size of XML documents is usually smaller than that of more complicated data, such
as audio and video.

6.2.2 Query retrieval.Tables 4 and 5 show the query set and the time in seconds for
processing the queries, respectively. The time was measured for ten runs and the average
was recorded. Note that, in many cases, FK99 requires extra processing to reconstruct
document fragments from the resulting tuples, because the retrieved answer contains only
identifiers of elements. On the other hand, because XRel keeps the information concerning
positions in the original document, all we have to do is extract substrings from the original
XML documents.

From the result of Q1 and Q2, we can see that the performance of XRel is not affected
from the length of simple path expressions, whereas the performance of FK99 is affected
because FK99 requires a number of join operations in proportion to the length of a path

2〈URL: http://metalab.unc.edu/bosak/xml/eg/shaks200.zip〉

www.manaraa.com

XRel: A Path-Based Approach to Storage and Retrieval of XML Documents · 27

Table 4. Queries for performance evaluation.
Query expression Feature

Q1 /PLAY/ACT simple path expression (short)
Q2 /PLAY/ACT/SCENE/SPEECH/LINE/STAGEDIR simple path expression (long)
Q3 //SCENE/TITLE one ‘//’
Q4 //ACT//TITLE two ‘//’s
Q5 /PLAY/ACT[2] index
Q6 (/PLAY/ACT)[2]/TITLE grouping and index
Q7 /PLAY/ACT/SCENE/SPEECH[SPEAKER = ’CURIO’] text matching
Q8 /PLAY/ACT/SCENE[//SPEAKER = ’Steward’]/TITLE ‘//’ and text matching

Table 5. Query performance (seconds).
XRel FK99 tuples

Q1 0.021 0.026 185
Q2 0.024 0.694 618
Q3 0.320 0.125 750
Q4 0.304 16.509 766
Q5 0.805 0.159 37
Q6 2.790 0.737 74
Q7 2.748 19.306 4
Q8 9.687 — 6

expression. On the other hand, XRel basically processes a path expression in terms of a
string match operation of SQL–92. Thus, the performance is independent of the length of
path expressions.

The queries Q3 and Q4 contain one or two ‘//’(s). FK99 is faster than XRel concerning
Q3. The reason is that recursive query is not necessary for the processing if ‘//’ is only
at the head of the path expression. In that case, searchingSCENE table is equivalent to
‘//SCENE,’ because the table contains all theSCENE elements in the document. However,
if one or more ‘//’(s) are in the middle of a path expression, FK99 consumes much time
as we can see in Q4. Even so XRel is effective, because XRel can process a ‘//’ as a string
match operation including wild card (‘%’).

Q5 and Q6 concern predicates using index operator. Basically, XRel is effective be-
cause the information is represented in terms ofindexandreindexattributes. However, the
information become useless if grouping operator ‘()’ is used. In that case, we have to
use sub-queries withNOT EXISTS predicate of SQL–92 in order to extract elements in
the required order. For this reason, Q6 consumes much time than Q5. In FK99, the same
situation holds, but it is more faster than XRel.

Q7 and Q8 contain more complicated predicates like text matching. XRel is still effec-
tive, where as FK99 consumes longer time or gives up the processing as translated SQL
queries become more complicated. This is manly due to growing numbers of join opera-
tions.

7. CONCLUSIONS

In this paper, we described XRel, an approach to storage and retrieval of XML documents
using (object) relational databases. Using XRel enabled us to easily construct XQL inter-

www.manaraa.com

28 · M. Yoshikawa et al.

face on top of the (object) relational databases.
In this research, we limited extensions to types and functions, and did not need any spe-

cial indexing structure for query processing. However, some extensions could be needed;
for example, abstract data types for synthesizing query results would be required if we
implement XML–QL interface. Further, because our approach does not use a special full-
text search system, it may not achieve high performance on query retrieval. It is therefore
important to develop abstract data types for improvement of performance. Full-text search
for document contents, consideration of data types and XML schema, and support of doc-
ument updates will be included in our future work.

In some DTDs or document structures, it might be effective to design relational schema
combining the structure-mapping approach and the model-mapping approach. To design
optimal relational schema based on such statistical characteristics of XML documents is a
challenging subject of research.

In general, the contents of XML documents vary over time. It is quite useful in many
applications to record the temporal changes made to XML documents. In order to cap-
ture such temporal XML documents, we are investigating temporal extensions to XML
databases [Amagasa et al. 2000; Amagasa et al. 2001].

REFERENCES

ABITEBOUL, S., CLUET, S., CHRISTOPHIDES, V., M ILO , T., MOERKOTTE, G., AND SIM ÉON, J. 1997.
Querying Documents in Object Databases.International Journal of Digital Libraries 1, 1, 5–19.

AMAGASA , T., YOSHIKAWA , M., AND UEMURA, S. 2000. A data model for temporal XML documents.
In Proc. of the 11th International Conference on Database and Exp ert Systems Applications (DEXA
2000), LNCS 1873 (September 2000), pp. 334–344.

AMAGASA , T., YOSHIKAWA , M., AND UEMURA, S. 2001. Realizing temporal xml repositories using
temporal relational databases. InProc. of The Third International Symposium on Cooperative Database
Systems for Advanced Applications (CODAS’2001)(April 2001).

BAEZA-YATES, R. AND NAVARRO, G. 1996. Integrating Contents and Structure in Text Retrieval.ACM
SIGMOD Record 25, 1 (March), 67–79.

BLAKE , G. E., CONSENS, M. P., DAVIS , I. J., KILPELÄINEN, P., KUIKKA , E., LARSON, P. A., SNIDER,
T., AND TOMPA, F. W. 1995. Text / relational database management systems: Overview and pro-
posed sql extensions. Technical Report CS-95-25 (June), UW Centre for the New OED and Text Research,
Department of Computer Science, University of Waterloo.

BONIFATI , A. AND CERI, S. 2000. Comparative analysis of five xml query languages.SIGMOD
Record 29, 1, 68–79.

BURKOWSKI, F. J. 1992. An algebra for hierarchically organized text-dominated databases.Information
Processing & Management 28, 3, 333–348.

CHAMBERLIN , D. D., ROBIE, J., AND FLORESCU, D. 2000a. Quilt: An xml query language for het-
erogeneous data sources. InProceedings of the Third International Workshop on the Web and Databases,
WebDB 2000(May 2000), pp. 53–62.

CHAMBERLIN , D. D., ROBIE, J.,AND FLORESCU, D. 2000b. Quilt: An xml query language for hetero-
geneous data sources. to be published in Lecture Notes in Computer Science, Springer-Verlag,.

CHRISTOPHIDES, V., ABITEBOUL, S., CLUET, S., AND SCHOLL, M. 1994. From Structured Docu-
ments to Novel Query Facilities. InProc. ACM SIGMOD International Conference on Management of
Data (May 1994), pp. 313–324.

CLARKE, C. L. A., CORMACK, G. V., AND BURKOWSKI, F. J. 1995a. An Algebra for Structured Text
Search and A Framework for its Implementation.The Computer Journal 38, 1, 43–56.

CLARKE, C. L. A., CORMACK, G. V., AND BURKOWSKI, F. J. 1995b. Schema-independent retrieval
from heterogeneous structured text. InProc. of the 4th Annual Symposium on Document Analysis and
Information Retrieval(Las Vegas, April 1995), pp. 279–290.

COVER, R. The XML cover pages. http://www.oasis-open.org/cover/xml.html.

www.manaraa.com

XRel: A Path-Based Approach to Storage and Retrieval of XML Documents · 29

DEUTSCH, A., FERNANDEZ, M., FLORESCU, D., LEVY, A., AND SUCIU, D. 1998. XML-QL : A
Query Language for XML. http://www.w3.org/TR/NOTE-xml-ql/.

DEUTSCH, A., FERNANDEZ, M., FLORESCU, D., LEVY, A., AND SUCIU, D. 1999. A Query Language
for XML. WWW8 / Computer Networks 31, 11-16,17 (May), 1155–1169.

FERNANDEZ, M. AND SIM ÉON, J. 1999. Xml query languages: Experiences and exemplars. draft
manuscript, communication to the XML Query W3C Working Group, http://www-db.research.bell-
labs.com/user/simeon/xquery.html.

FLORESCU, D. AND KOSSMANN, D. 1999a. A performance evaluation of alternative mapping
schemes for storing xml data in a relational database. Technical Report 3680 (May), INRIA.
http://rodin.inria.fr/dataFiles/FK99.ps.

FLORESCU, D. AND KOSSMANN, D. 1999b. Storing and querying xml data using an rdmbs.IEEE Data
Engineering Bulletin 22, 3 (Sept.), 27–34.

HOROWITS, E. AND WILLIAMSON , R. C. 1986. Sodos: A software documentation support environment
– its definition.IEEE Trans. on Software Engineering SE-12, 8 (Aug.), 849–859.

ISO. 1986. ISO 8879: 1986.Information Processing – Text and Office System – Standard Generalized
Markup Language (SGML). ISO.

KHA , D. D., YOSHIKAWA , M., AND UEMURA, S. 2001. An xml indexing structure with relative region
coordinate. InProc. of IEEE 17th International Conference on Data Engineering(2001).

LEAVITT , N. 2000. Whatever happened to object-oriented databases?IEEE Computer 33, 8 (Aug.), 16–
19.

NAVARRO, G. AND BAEZA-YATES, R. 1997. Proximal nodes: A model to query document databases by
content and structure.ACM Trans. on Information Systems 15, 4 (October), 400–435.

ROBIE, J. 1999. XQL (XML Query Language). http://metalab.unc.edu/xql/xql-proposal.xml.
ROBIE, J., CHAMBERLIN , D., AND FLORESCU, D. 2000. Quilt: an xml query language.

http://www.almaden.ibm.com/cs/people/chamberlin/quilteuro.html.
ROBIE, J., LAPP, J., AND SCHACH, D. 1998. XML Query Language (XQL).

http://www.w3.org/TandS/QL/QL98/pp/xql.html.
SACKS-DAVIS , R., ARNOLD-MOORE, T., AND ZOBEL, J. 1994. Database Systems for Structured Doc-

uments. InProc. of the International Symposium on Advanced Database Technologies and Their Integra-
tion (October 1994), pp. 272–283.

SACKS-DAVIS , R., DAO, T., THOM, J. A., AND ZOBEL, J. 1998. Indexing documents for queries
on structure, content and attributes. InInternational Symposium on Digital Media Information Base
(DMIB’97), pp. 236–245. World Scientific.

SALMINEN , A. AND TOMPA, F. W. 1994. Pat expressions: an algebra for text search.Acta Linguistica
Hungarica 41, 1-4 (1992-93), 277–306.

SHANMUGASUNDARAM, J., TUFTE, K., HE, G., ZHANG, C., DEWITT, D. J., AND NAUGHTON, J. F.
1999. Relational Databases for Querying XML Documents: Limitations and Opportunities. In M. P.
ATKINSON, M. E. ORLOWSKA, P. VALDURIEZ, S. B. ZDONIK , AND M. L. BRODIE Eds.,VLDB’99,
Proceedings of 25th International Conference on Very Large Data Bases, September 7-10, 1999, Edin-
burgh, Scotland, UK(1999), pp. 302–314. Morgan Kaufmann.

WORLD WIDE WEB CONSORTIUM. XML Query. http://www.w3.org/XML/Query.
WORLD WIDE WEB CONSORTIUM. 1998. Extensible Markup Language (XML) 1.0.

http://www.w3.org/TR/1998/REC-xml-19980210. W3C Recommendation 10-February-1998.
WORLD WIDE WEB CONSORTIUM. 1999. XML Path Language (XPath) version 1.0.

http://www.w3.org/TR/xpath. W3C Recommendation 16 November 1999.
WORLD WIDE WEB CONSORTIUM. 2000a. XML Query Data Model. http://www.w3.org/TR/2000/WD-

query-datamodel-20000511. W3C Working Draft 11-May-2000.
WORLD WIDE WEB CONSORTIUM.

2000b. XML Query Requirements. http://www.w3.org/TR/2000/WD-xmlquery-req-20000815. W3C
Working Draft 15-August-2000.

ZHANG, J. 1995. Application of OODB and SGML Techniques in Text Database: An Electronic Dictio-
nary System.SIGMOD Record 24, 1 (March), 3–8.

